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Abstract

This paper focuses on the problem of aspect-specific sentiment analysis. The goal
here is to not only extract aspects of a product or service, but also to identify
specific sentiments being expressed about them. Most existing algorithms ad-
dress this problem by treating aspect extraction and sentiment analysis as separate
phases or by enforcing explicit modeling assumptions on how these two phases
should overlap and interact. In this paper, we propose a novel approach based
on a hierarchical deep learning framework which overcomes the aforementioned
drawbacks. We experiment with various models of semantic compositionality
within this framework. Experimental results on real world datasets show that the
proposed framework outperforms other state-of-the-art techniques. In addition,
we also demonstrate how domain adaptation using word vectors can benefit the
task of aspect specific sentiment analyis.

1 Introduction

With the increase in user reviews on the web, there has been a huge demand for opinion mining
techniques which facilitate effective summarization of huge volumes of opinions. This goal can
be achieved by identifying specific aspects of a product or service being reviewed and determining
the sentiment expressed about these aspects. This task is popularly referred to as aspect specific
sentiment analysis in literature.

In order to illustrate the task at hand, let us consider a text snippet expressing a customer’s opinion
about a particular beer. “This beer is tasty and leaves a thick lacing around the glass” This snippet
discusses multiple aspects such as the taste of the beer and its appearance. The review expresses
positive sentiments about both the aspects. It is interesting to note that the word “tasty” serves both
as an aspect as well as a sentiment word in this case. The phrase “leaves a thick lacing” suggests
that the snippet is discussing about the appearance of the beer and usage of “thick lacing” can be
attributed to positive sentiment. This example demonstrates the intricacies involved in the task of
aspect specific sentiment analysis.

In order to tackle the problem at hand, several approaches ranging from heuristic based methods
to sophisticated topic models have been proposed. However, there are two major drawbacks with
most of the proposed approaches. Firstly, a chunk of them [6, 12] treat the tasks of aspect extraction
and sentiment analysis as two separate phases. The process of interleaving these two phases in a
more tightly coupled manner allows us to capture subtle dependencies. Secondly, though there exist
approaches which consider joint modeling of aspects and sentiments [8, 7, 17], they constrain the
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way these phases interleave by making rigid modeling assumptions. In order to address the afore-
mentioned drawbacks, we propose a novel deep learning based framework for solving the problem
at hand. The major distinguishing factor of this framework is that the joint modeling of aspects
and sentiments is carried out without making strict modeling assumptions about the interleaving of
aspect and sentiment extraction phases.

2 Related Work

This work spans two major areas within NLP research namely models of semantic compositionality
and aspect specific sentiment analysis.

Aspect specific sentiment analysis The problem of aspect specific sentiment analysis has been of
great interest in the past decade because of its practical applicability. [6] formulated this problem
and proposed association mining based algorithm to extract product features. Wordnet synsets were
used to capture sentiment polarity of words. [12] approached this problem by proposing rule based
ontologies. More recently, [1] and [9] proposed models for uncovering parts of reviews which
mention specific aspects. [8] proposed sentence level topic models to extract aspects and identifying
the sentiment polarity. Though these models account for joint modeling of aspects and sentiments,
they make assumptions about the syntax of the words and how the syntax governs if a particular
word is an aspect or a sentiment. This is not ideal because there are words that we encounter in real
world (such as “tasty”) which play a dual role of representing both aspects and sentiments.

Models of semantic compositionality In order to capture the semantic compositionality and in-
teractions between words in a phrase, several approaches have been proposed. [11] modeled word
compositions by vector addition, multiplication and other simple combinations of word represen-
tations. [18] modeled composition of longer phrases using matrix multiplications. More recently,
[13, 14] modeled semantic compositionality of sentences and phrases by leveraging parse trees and
associating word vectors and interaction matrices with each word in the given phrase and expressed
their combination using non-linear functions. Further, [5] integrated the notion of syntax and se-
mantics by bringing together concepts of compositional vector space semantics and combinatory
categorical grammar.

In this work, we leverage the strengths of compositional feature representations in order to address
the drawbacks prevalent in current solutions for aspect specific sentiment analysis.

3 Our Approach

The basic idea behind our approach is to learn representations for words (word vectors and matrices)
which can explain the aspect-sentiment labels at the phrase level. In order to solve this problem, we
propose a hierarchical deep learning framework which comprises of dealing with feature represen-
tations corresponding to the words and subsequent parses of the phrases and sentences. All these
feature representations finally contribute to an objective function that we solve. We further leverage
this objective function to come up with multiple formulations to solve the problem. We discuss each
of these steps in greater detail below:

Problem Definition: Given a set of sentences L = {l1, l2, l3..}, identify aspect - sentiment pairs
{(a1i , s1i ), (a2i , s2i )..} present in each sentence li.

3.1 Compositional feature representations

This phase involves representing each word using a vector and utilizing the binary parse of the sen-
tences as a framework to combine these vector representations in a bottom up fashion as shown in
the Figure 1. Each word is represented using a d-dimensional word vector. These d-dimensional
vectors can either be initialized randomly or using pretrained vectors [2]. We experiment with mul-
tiple models for combining these vector representations. These representations have been proposed
in compositional semantics literature [4, 16, 13, 14]. A brief discussion of these models is presented
below for the sake of completeness.
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3.1.1 Recursive Neural Network (RNN)

Figure 1: Depiction of the combination of feature
representations of words by leveraging the parse
of the phrase.

This form of semantic compositionality was
proposed in [4, 16]. This model associates a d-
dimensional vector with each word. As shown
in Figure 1, the vectors for the node in the parse
tree are computed bottom up. Recursive neural
network model uses the following equations to
compute the parent vectors :

p1 = f

(
W

[
b
c

])
p2 = f

(
W

[
a
p1

])
where p1 and p2 are parent vectors, and b and c
are leaf nodes as shown in Figure 1. f = tanh
is a standard element-wise non-linearity. W ∈
Rd×2d is the matrix which will be learnt. These
vectors are propagated till the root.

3.1.2 Matrix-Vector RNN (MV-RNN)

This model was introduced in [14]. Each node in the parse tree is associated with a d × d dimen-
sional matrix and a d-dimensional word vector. This matrix vector representation allows interactions
betweeen words to be captured in an elegant way. The matrix representations are initialized using
identity matrices with added gaussian noise. Let A, B, C, P1 and P2 correspond to the matrix repre-
sentations of each of the nodes whose vector representations are a, b, c, p1 and p2 respectively. This
model uses the following equations to compute the parent vectors and matrices :

p1 = f

(
W

[
Cb
Bc

])
P1 = f

(
WM

[
B
C

])
where WM ∈ Rd×2d. The vector and matrix representations for the next parent node (p2, P2) can
be computed in an analogous way. The matrix W is as defined in the RNN model. f = tanh is
standard element-wise non-linearity.

3.1.3 Recursive Neural Tensor Network (RNTN)

A challenge with MV-RNN is that the number of matrices and vectors increases linearly with the
vocabulary. In order to address this, [15] presented a novel and a more efficient form of semantic
compositionality called RNTN.

In this model, each node in the parse tree is associated with a vector and there is no concept of
matrices being associated in this model. The interactions are modeled using a tensor which defines
multiple bilinear forms. This model uses the following equations to compute parent vectors :

p1 = f

([
b
c

]T
V [1:d]

[
b
c

]
+W

[
b
c

])
where V [1:d] ∈ R2d×d×d is the tensor defining multiple bilinear forms. Intuitively, each slice of
dimensions 2d × 2d in this tensor can be regarded as a compositionality. The vector p2 can be
computed in an analogous manner from vectors p1 and a.

In summary, we discussed a sequence of increasingly complex compositional feature representa-
tions. These models should be seen as various strategies that could be plugged into the setup we are
proposing1.

3.2 Objective Function

In this section, we elaborate on extending the representations (discussed in the previous section) to
a setting which is meaningful for the task at hand. This can be achieved by setting up an objective

1Note that only one of the compositional representations can be plugged in to the objective function
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function and tying it to the compositional feature representation appropriately. In order to arrive at
this objective function, we begin by posing the problem in a supervised setting.

The main idea behind the approach we employ is that the training process should ensure that the
parameters are fit in such a way that the softmax function of the vector representation at the root
level of the parse tree yi ∈ C × 1 matches the class label of the text snippet as closely as possible.
yi is defined as

yi = softmax (Wsp
root
i )

where Ws ∈ R5×d is the classification matrix which needs to be estimated and prooti ∈ d × 1 is
the vector representation at the root level of the parse tree. This is achieved by defining a target
distribution vector ti ∈ RC×1. This vector has an entry 1 at the correct label (or labels in case of
multi-class classification formulation) and a 0 at other indices.

Our objective is to maximize the probability that the vector representation at the root of each parse
tree is as close to the corresponding target distribution vector as possible. This can be achieved
by using an objective function which minimizes the cross entropy error between these two vectors.
Therefore, the error function to be minimized is given by the equation :

E(θ) =
∑
i

∑
j

tij log y
i
j + λ||θ||2

Here, θ corresponds to the various parameters of the compositional models we discussed in the
previous sub section. The previous section also discussed the computation of the vectors at the root
of the parse tree and this vector corresponds to prooti that we used in the equations above.

3.3 Formulations

In this section, we bring together the concepts of feature representations and objective functions that
we outlined previously and discuss in detail how these can be connected to the aspect and sentiment
labels of the text snippets. Below, we describe what constitutes class labels and the various ways in
which aspects and sentiments can correspond to class labels. Here are the different formulations -

Separate Aspect Sentiment Model (SAS) - In this formulation, we treat aspect extraction
and sentiment extraction as two separate phases. We train two separate softmax classifiers, one each
for aspect label and sentiment label respectively. In this process, an aspect label and a sentiment
label are obtained separately and the (aspect, sentiment) pairs result from the concatenation of the
two separate labels. Though this formulation is straightforward and easy to train, it has two major
drawbacks. Firstly, as discussed in the introduction, the concept of joint modeling is not facilitated
by this formulation. Secondly, this formulation cannot handle the snippets with multiple (aspect,
sentiment) pairs because, though it is possible to obtain a chunk of aspect labels and another chunk
of sentiment labels (from two separate classifiers), there is no way to associate them appropriately
due to the separate training of the two softmax classifiers.

Joint Multi-Aspect Sentiment Model (JMAS) In order to address the shortcomings of SAS, we
propose a formulation that trains a single softmax classifier on the aspect-sentiment pairs. The class
labels are now aspect-sentiment pairs. For example, (Taste, Positive) corresponds to one class label.
This formulation now enables the joint capture of aspects and sentiments elegantly without making
any explicit assumptions about their interactions. Further, this model can handle the snippets with
multiple (aspect, sentiment) pairs. This can be achieved by allowing more than one element of the
target distribution vector ti (defined in section Objective Function) to be set to the value 1. This
set up poses the problem of aspect and sentiment detection as a multi-class softmax classification
problem in the context of deep learning.

3.4 Training

All the compositional feature representation models and formulations discussed are trained by com-
puting the gradients of objective function E(θ) with respect to the various parameters. The functions
we are dealing with are non-convex and we employ Adagrad optimization procedure [3] to solve the
functions. Further, the estimation procedure involves forward computation of vectors and matrices
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and backpropagation of the appropriate gradients. While backpropagating the gradients, we run into
vanishing gradient problems (when gradient values tend to zero) [13, 14].

[13, 14] resolve this problem by propagating the softmax error at the root to all the subsequent
levels of the parse tree. However, in our case, this kind of propagation is not ideal since forcing
this global softmax error on all the subsequent levels forces the various constituents of a particular
text snippet to correspond to the same aspect and sentiment labels as at the root. To illustrate, let
us consider the following text snippet “The beer is very tasty”. This snippet is associated with the
aspect taste and a positive sentiment. (taste, positive) would be the class label at the root (in JMAS
formulation). In the case of SAS formulation, the class labels at the roots would be taste and positive
respectively. Now, let us consider the constituents of this snippet “The beer” and “very tasty”. It
would be incorrect if we force the labels at the nodes corresponding to both these snippets to (taste,
positive). This is because the phrase “The beer“ does not say anything about either the taste or the
positive sentiment. This problem can be eliminated if various constituent phrases and words are
annotated with appropriate aspect - sentiment pairs. However, annotations at such fine granularities
are typically not available in most real world data.

In order to deal with this problem, we use the strategy of propagating the softmax errors from the
root only to the initial few levels of the tree. Experimentation revealed that propagating these errors
to the initial levels of the parse tree is alleviating the vanishing gradient problem and at the same
time, this is not restricting the finer grained constituents of the parse trees to conform to the class
labels at the root. We are using the heuristic log2N where N is the number of the levels in the
parse tree to determine the number of levels (closer to the root) to which the softmax errors must be
propagated. This heuristic worked very well in practice.

4 Experimental Evaluation

In this section, we discuss in detail the experiments carried out to evaluate the proposed framework.
We begin with a detailed description of the datasets followed by a discussion on the baselines.
Then, we describe the quantitative analysis where we present the results of our models and our
experimentation facilitating domain adaptation. Lastly, we conclude this section by discussing the
qualitative analysis where we analyze several case based scenarios.

Initialization and Pretraining For all the experiments, the word vectors have been intialized us-
ing pretrained vectors from [2]. In case of MV-RNN feature representation, the matrices associated
with each word have been initialized as I + ε where I is the identity matrix and ε corresponds to
gaussian noise.

Dataset Description We used two different datasets for experimental evaluation - beer reviews2

and camera reviews3. The details of these datasets are presented below:

Dataset # of Sentences Aspects Sentiment Scale
Beer Reviews 8532 Aroma, Appearance, Palate, Taste, Beer 1 to 5

Camera Reviews 5008 Price, Battery, Accessories, Display, Portability, Camera 1 to 5

Each sentence in these datasets is labeled with the corresponding aspect - sentiment pairs. The
beer review dataset comprises of five different aspects. The camera review dataset comprises of six
aspects. In both the datasets, sentiments are expressed on a scale of 1 (highly negative) to 5 (highly
positive).

Baselines In order to assess the efficacy of our approach, we compare it against FACTS (FACeT
and Sentiment extraction model) and CFACTS (Coherence based FACeT and Sentiment extraction
model) models proposed in [8]. FACTS is a generative approach to capture latent facets and as-
sociated sentiments. This approach divides words into various syntactic classes and associates a
particular syntactic class with aspects and another syntactic class with sentiments. This model rep-
resents those classes of approaches which rely on syntactic assumptions for discovering aspects and

2http://snap.stanford.edu/data/web-BeerAdvocate.html
3http://www.amazon.com/

5



Single Aspect - Sentiment Pair Multiple Aspect - Sentiment Pairs
Approach (aspect, sentiment) pairs aspects sentiments (aspect, sentiment) pairs aspects sentiments
JMAS + RNTN 66.32% 72.02% 69.38% 69.28% 77.04% 71.42%
JMAS + MV-RNN 65.10% 70.23% 69.28% 68.19% 75.48% 69.03%
JMAS + RNN 56.32% 68.92% 58.16% 48.17% 61.11% 52.02%

SAS + RNTN 61.48% 66.78% 63.18% - - -
SAS + MV-RNN 61.29% 67.02% 63.02% - - -
SAS + RNN 52.82% 66.02% 56.91% - - -

Baseline - CFACTS 60.02% 62.33% 60.28% 53.38% 67.31% 53.49%
Baseline - FACTS 59.82% 62.91% 60.02% 52.29% 66.87% 53.01%
Baseline - SVM (tf-idf) 54.38% 66.02% 57.38% 53.92% 64.38% 54.81%
Baseline - NB (tf-idf) 51.97% 63.54% 56.11% 53.36% 62.45% 55.90%

Table 1: Accuracies reported for aspect-specific sentiment analysis - Beer reviews

sentiments. Note that this approach encapsulates the notion of weak coupling between aspects and
sentiments via its generative process. On the other hand, CFACTS enforces a stronger dependency
between the aspect and sentiment extraction phases via its modeling assumptions. In addition, we
also compare our approach against Multi-class Support Vector Machines4 and Naive Bayes classi-
fiers with tf-idf vectors of words as features.

4.1 Quantitative Analysis

In this subsection, we present the quantitative analysis that we carried out with camera review and
beer review datasets in detail.

4.1.1 Single Aspect - Sentiment Pair Detection

In this case, we assume that each text snippet is associated with atmost a single aspect - sentiment
pair. We pick only those sentences from our data which are tagged with a single aspect - sentiment
pair. There are 8415 sentences in the beer review dataset and 4820 sentences in the camera review
dataset which satisfy this criterion. We account for the case where an aspect or sentiment or both
may be missing by using the label “empty”. So, either the aspect of a sentence or its sentiment
or both can be tagged as “empty”. The results are presented in Columns 2 - 4 of Tables 1 and
2. The numbers reported are results of a 10-fold cross validation. As can be seen, each of the
formulations discussed earlier can be used with various compositionality representations. The tables
show various combinations of these. Also, we report three different accuracy numbers - correctness
of the prediction of aspect - sentiment pair (Column 2), correctness of the prediction of aspect
(Column 3), correctness of the prediction of sentiment (Column 4).

Discussion From Tables 1 and 2, it can be seen that the RNTN and MV-RNN representations out-
perform RNN representation and other baselines across all the dimensions. This shows that simple
concatenation of feature representations of constituent phrases does not work as well as represen-
tations where in complex interactions between constituents are allowed. Also, JMAS formulation
outperforms SAS formulation which involves independent aspect extraction and sentiment detection
phases. This shows that the concept of joint modeling of aspects and sentiments is indeed beneficial.
In addition, the baselines CFACTS and FACTS model performs slightly worse than the SAS model.
This was mainly due to those data points where aspects and sentiments did not conform to a par-
ticular syntactic category. In fact, it is interesting to note that SVM (with tf-idf features) performs
aspect detection better than the baseline FACTS model. This is an indication that associating aspects
and sentiments with specific syntactic categories might be too constraining in case of the data we
are dealing with, where the boundaries between aspect words and sentiment words are blurry and
sentiments are more subtle.

4.1.2 Multiple Aspect - Sentiment Pairs Detection

In this case, we relax the assumption that each text snippet should be associated with a single aspect
- sentiment pair. In the beer reviews corpus, there are 117 sentences which have multiple aspect

4http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/multilabel/
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Single Aspect - Sentiment Pair Multiple Aspect - Sentiment Pairs
Approach (aspect, sentiment) pairs aspects sentiments (aspect, sentiment) pairs aspects sentiments
JMAS + RNTN 73.45% 78.10% 74.41% 75.34% 81.02% 76.11%
JMAS + MV-RNN 68.22% 75.28% 71.31% 69.12% 77.48% 72.05%
JMAS + RNN 58.52% 70.11% 63.56% 56.18% 67.87% 58.11%

SAS + RNTN 66.11% 69.14% 68.22% - - -
SAS + MV-RNN 64.81% 69.18% 65.11% - - -
SAS + RNN 53.68% 68.31% 57.91% - - -

Baseline - CFACTS 64.1% 65.65% 65.10% 63.38% 69.44% 65.67%
Baseline - FACTS 61.48% 63.12% 64.19% 62.11% 65.22% 64.19%
Baseline - SVM (tf-idf) 61.11% 67.81% 64.32% 61.12% 66.19% 65.88%
Baseline - NB (tf-idf) 56.19% 61.23% 60.28% 59.08% 63.08% 61.09%

Table 2: Accuracies reported for aspect-specific sentiment analysis - Camera reviews

- sentiment pairs as labels. In the camera reviews dataset, 188 sentences have multiple aspect -
sentiment labels. In this part of the experimentation too, we account for absence of aspect or sen-
timent labels using the class label “empty”. A 10-fold cross validation was carried out using only
those sentences which had multiple aspect - sentiment labels. In addition, the training set also had
all those sentences which had a single aspect - sentiment label. However, the test set solely com-
prised of those sentences which had multiple aspect - sentiment labels. The results are presented in
Columns 5 - 7 of Tables 1 and 2. It can be seen that the entries in these columns corresponding to
SAS formulation are empty. This is due to the fact that SAS is tailored towards a single aspect -
sentiment label classification.

Discussion Columns 5-7 of Tables 1 and 2 show that RNTN and MV-RNN representations con-
sistently outperform RNN representation and baselines. This indicates that the RNN representation
does not capture the interactions between various constituents of sentences well. It is in fact inter-
esting to note that RNN model performs worse than the baselines.

4.1.3 Domain adaptation using word vectors

Another interesting aspect of our analysis constitutes the usage of word vectors obtained from other
related datasets as a means of facilitating domain adaptation. We trained the model JMAS + RNTN
for the beer dataset by initializing word vectors to those obtained from JMAS + RNTN model for the
camera dataset and viceversa. This resulted in an improvement in the sentiment detection by 3.01%
and 1.67% in the beer review and camera review datasets respectively. Further, the accuracy of
aspect specific sentiment detection increased by 0.87% and 0.83% respectively. Since the domains of
beer and camera are not very much related in terms of their aspects, we found that the improvements
in sentiment detection did not translate to accuracy improvements of the over all task.

4.2 Qualitative Analysis

In this section, we discuss some anecdotal examples which demonstrate the importance of various
concepts crucial to the task of aspect specific sentiment analysis. Through out this section, we refer
to the RNTN representations of the respective formulations.

Joint modeling As motivated in the introduction, joint modeling of aspects and sentiments turned
out to be important in the process of aspect specific sentiment analysis. We observed several in-
stances in our corpus where clearly the sentiment words were dependent on the aspect under con-
sideration. Similarly, it also seemed that occurrence of certain sentiment words automatically re-
inforced the presence of related aspects. Amongst all the approaches and their ablations we are
dealing with, JMAS concretely enforces this notion of coupling the phases of aspect extraction and
sentiment analysis without explicitly constraining the interactions between these phases. On the
other hand, SAS does not capture the notion of coupling. Here we examine some sample sentences
from the data and their ground truth labels. Then, we discuss how various approaches handled these
examples -

• I’m not getting a huge roasted character which is standard with export stouts, but this is a
delicious beer that’s highly drinkable - (Palate, Positive)
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• high carbonation level, kinda thin - (Palate, Negative)

• Display quality of the camera is high - (Display, Positive)

• This camera is highly expensive - (Price, Negative)

JMAS formulation correctly identified the aspect - sentiment pairs in each of these cases. However,
ablations of SAS failed to capture the sentiment correctly in these examples. The reason being that
words such as “high” which are indicative of sentiments in each of these examples have a differ-
ent meaning based on the aspects they are being associated with. When the word “high” appears
alongside “drinkability”, it is positive. On the other hand, when it appears alongside “carbonation
level”, it is negative. Similarly, the word “high” conveys a positive sentiment when it is used to
describe “display quality” of the camera. On the other hand, the phrase “highly expensive” indicates
a negative sentiment. This nuance could not be captured well by SAS model and whenever words
such as “high” whose sentiment was conditioned upon the aspect being discussed appeared, it was
interesting to see some sort of a random assignment to sentiment classes. On the other hand, JMAS
formulation captured these cases correctly with high probability.

Multiple aspect - sentiment capture We discussed an example in the introduction that clearly
highlighted the presence of multiple aspect - sentiment pairs in a text snippet. Here, we present few
more such examples (and their ground truth labels) and discuss how well the approaches handled
these.

• This is turning out to be much of the same, with less IPA and more tripel in the smell and
taste - { (Aroma, Positive), (Taste, Positive) }

• There wasn’t any lacing to be seen and for the most part, that was the taste too - { (Ap-
pearance, Negative), (Taste, Negative) }

• The camera came with a superior quality display, however I am not very convinced if it was
worth the money - { (Display, Positive), (Price, Negative) }

JMAS formulation correctly identified all the aspect - sentiment pairs in each of these cases. SAS
formulation is not designed for handling multiple aspects. However, it could predict one aspect -
sentiment pair (Display, Positive) of the third example correctly. The predictions of SAS in case of
the first and third examples were incorrect.

Relaxing modeling assumptions on interactions between aspects and sentiments The JMAS
formulation facilitates joint modeling without explicitly enforcing modeling assumptions on how
aspects and sentiments should interact. We observed that this was crucial to the task of aspect
specific sentiment analysis. For instance, there were words such as “tasty” which served as indicators
of both aspects and sentiments. However, many state-of-the-art approaches (including our baselines)
leverage the assumption that aspect words are typically nouns and sentiment words are adjectives.
Below we present few examples along with their ground truth labels from our dataset where not
having any such assumptions helped in making correct predictions -

• This is really tasty - (Taste, Highly Positive)

• very dark and frothy – no light escapes here at all - (Appearance, Positive)

• This is a pricey camera - (Price, Negative)

All our formulations resulted in correct predictions of aspect-sentiment pairs for all the three exam-
ples above. CFACTS and FACTS baselines were unsuccessful in all the three cases.

5 Conclusion
In this work, we attempted to bridge the gap between the literature on semantic compositionality
and aspect-specific sentiment analysis. The framework we proposed encapsulates several important
modeling decisions, such as joint modeling of aspects and sentiments, the ability to handle the pres-
ence of multiple aspects and associated sentiments in a given piece of text, and not making strict
modeling assumptions about interleaving aspect and sentiment extraction. The evaluation that we
carried out on real-world data demonstrated that our approaches incorporating sophisticated neu-
ral semantic composition functions consistently outperform other state-of-the-art techniques, with
subsequent qualitative analysis confirming the need for various model elements.
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