Homework 1

This assignment consists of a set of problems, which will give you the experience with relevant concepts in later lectures of this course.

1. **Hyperplane properties** (useful concept in defining Support Vector Machines) [20pt]
 a) *[10pt]* Prove that the shortest distance from the origin to hyperplane h is $\frac{|b|}{\|w\|}$ where

 $$ h = \{ x : w^T x - b = 0 \}, \ w \in \mathbb{R}^m, $$

 $$ b \in \mathbb{R}, \ x = (x_1, x_2, \ldots, x_m). $$

 [Hint: use the cosine of the angle between normal vector w and the horizontal axis in the figure.]

 b) *[10pt]* Prove that the perpendicular distance from point x to h is

 $$ \frac{yf(x)}{\|w\|} = \frac{y(w^T x - b)}{\|w\|} $$

 where $y \in \{-1, 1\}$ is the indicator of which side of h vector x is located.

References:
- C.M. Bishop, Pattern Recognition and Machine Learning, page 181-182
- Youtube, e.g., http://www.youtube.com/watch?v=AUzQg79gKJQ

2. **Eigenvalues and eigenvectors** (useful for proving the convergence of PageRank, etc.) [20pt]
 a) *[10pt]* Find the eigenvalues and eigenvectors of $A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$; show your calculation steps.

 b) *[10pt]* Show that the eigenvalues of A^k are $\lambda_1^k, \lambda_2^k, \ldots, \lambda_n^k$, the kth powers of the eigenvalues of matrix A, and that each eigenvector of A is still an eigenvector of A^k.

References:
- Gilbert Strang. Linear Algebra and its Applications, Ch 5. HBJ Publishers.
3. Maximum likelihood estimate (related to probabilistic models) [20pt]
 a) [10pt] Prove that in a binomial process of coin tossing, if the count of head-up is k out of n, then the maximum likelihood estimate (MLE) of the true head-up probability is $\hat{p} = \frac{k}{n}$.

 b) [10pt] Prove that in a multinomial process of sampling n words from a vocabulary of size m, the relative frequency of each word is the MLE of the true probability of that word:

 $$\hat{p}_j = \frac{n_j}{n}, \forall j = 1,2,\cdots,m,$$

 where n_j is the count of a specific word, and $n_1 + \cdots + n_m = n$.

4. Calculus (related to parameter optimization in logistic regression for classification) [40pt]
 a) [10pt] Show how to calculate the 1st derivative of sigmoid function $u = \frac{1}{1+e^{-x}}$ with respect to x, i.e., prove that $\frac{du}{dx} = u(1-u)$.

 b) [10pt] A multivariate function is defined as $l = y \ln u + (1-y) \ln(1-u)$, where

 $$u = \frac{1}{1+e^{-z}}, \quad z = w^T x = w_0 + w_1 x_1 + \cdots + w_m x_m$$

 and $w = (w_0, w_1, \cdots, w_m)$. Assuming x and y are given, show the calculation of the gradient of l w.r.t. w_0, w_1, \cdots, w_m:

 $$\nabla l = \left(\frac{\partial l}{\partial w_0}, \frac{\partial l}{\partial w_1}, \cdots, \frac{\partial l}{\partial w_m} \right)^T$$

 c) [10pt] Show the calculation of the pairwise 2nd order derivative $H_{ij} \equiv \frac{\partial^2 l}{\partial w_i \partial w_j}$.

 d) [10pt] Show that the function l in 4(b) (which is the log-likelihood function in logistic regression) is concave.
Turn In: Written Report

Submit your report in **PDF** format and name it as “HW1-YourAndrewID.pdf”. A typeset solution is preferred, but you may alternatively scan a handwritten solution. Please also include your **name and Andrew ID** at the **top of the first page** of your report. Your report must contain the solutions for all of the problems, with each subproblem clearly labeled as an independent section.

Restrictions

1. You must write all of the solutions yourself.
2. You must show your work for full credit.
3. If you submit a scanned handwritten solution, make sure that your handwriting is clear and legible. **If the TA cannot read your handwriting, the answer will be assumed to be incorrect.**

Copyright 2019, Carnegie Mellon University, Updated on 01/17/2019.